# Transport SDN: Learnings & Operational Challenges

July 2015
Anurag Sharma (<u>AnSharma@infinera.com</u>)
Sr. Principal SDN Architect



### Networking Trends for a Software Driven World



New Simplified Model (logically centralized control)



Services

**API - SDN** 

Intelligent Transport

#### **Network Functions**

Get Virtualized in the Cloud

#### **Transport Functions**

Converge on a Single Scalable Platform

Dynamic Bandwidth Intelligent Automation

Network Efficiency Application Driven Performance

DevOps Innovation



# Multi-layer Network View



### **Key Drivers for Transport SDN**

#### Service Innovation

- · Bandwidth on Demand
- Multi-Tenant Virtual Networks
- Network as a Service (NaaS)
- Intelligent SLA Management



# Automate Operations

- Unified Control & Provisioning
- Multi-Layer & Multi-Vendor
- Open API's



# Network Optimization

- Multi-Layer Restoration
- Traffic (Re-)Optimization
- Resource Optimization



# Promise of SDN-based Network Control & Programmability



#### **Independent Control Planes**

- Isolated over-provisioned network layers
- Disjoint network management
- Distributed, un-coordinated intelligence

#### **Multi-Layer SDN Architecture**

- Next-gen unified network control
- Multi-layer orchestration & optimization
- Network agility with DevOps model



5 | © 2015 Infinera Confidential & Proprietary

# Operational Reality: Multi-Layer Networking

- Real-time: On-demand network services and Bandwidth growth require more efficient networking
- Optimization: Network layers operating in isolation, not cooperation
  - Little cross-layer awareness & intelligence
  - Different departments at carriers for IP/MPLS and Transport (IP/MPLS networks typically over-provisioned by >50%)
  - Local optimization ≠ Global optimization
- Proprietary: Optical impairment calculations for WDM are proprietary for each vendor
- Interoperability: Common management abstractions & protocols lacking
  - Closed, proprietary multi-layer solutions limit evolution & innovation
- Deployments: Multi-Layer, Multi-Vendor, Multi-Domain, Multi-Region, Multi-criteria

IP/MPLS Network Layer

Transport

Network Layer
6 | © 2015 Infinera Confidential & Proprietary





# Operational Models: Multi-Layer PCE



#### **Single Multi-Layer PCE**

- Complete Multi-Layer topology information
- Multi-layer orchestration & optimization (improves network performance and utilization)
- Multi-layer restoration



#### **Multiple PCEs**

- Each network layer has its own PCE
  - [1] PCEs communicate to set up E2E path
  - [2] Orchestrator communicates with PCEs to set up E2E path
- Sub-optimal paths since full topology is unknown
- More expensive restoration



# Operational Challenges: Multi-Layer PCE

#### Single PCE is generally not applicable to carrier networks

- Organizational separation of IP/MPLS and transport network.
- Multi-vendor environment with PCE from each vendor.
- Vendor PCE can be for multiple layers. For e.g., transport PCE can do path computation for WDM, OTN, and MPLS-TP.

#### Inter-layer Topology Discovery

- How to build a complete view of the network, including inter-layer interconnects?
- Proprietary solutions exist to determine these interconnects.
- In many cases inter-layer interconnects need to be set up manually.

#### Multi-layer Policy enforcement

- Each network layer could have different policy Lack of common "normalized" policies.
- Inter-layer interconnects could have different policies.
- E2E inter-layer traffic engineering to be executed without violating multiple policies.

#### Multi-layer tools

- Multi-layer simulation tools.
- Troubleshooting tools E2E Multi-Layer path tracing.
- Use case simulation and testing tools, e.g. simulate network failures, understand different recovery schemes under different policies and constraints.
- Support for legacy equipment and legacy southbound protocols.
- Periodic re-optimization of the multi-layer network.



## Summary

#### Transport SDNs are being deployed

- SDN deployments started in data centers.
- Carriers are now deploying Transport SDN.
- ONF active in defining use-cases and support for transport SDN.

#### Multi-Layer SDN driven by E2E Automation & intelligence need

- API is the key to automation & operations.
- Rapid application & service innovation.
- Globalized view facilitates optimization of traffic & network.

#### Carriers and vendors working together

- Providing new services based on Transport SDN.
- Reducing OPEX and CAPEX using network automation and optimization.



# Thank You

